J Cardiol 2002 Apr; 39(4): 237-239

# Cardiovascular Imaging In-a-Month

多発する心室頻拍を認めた若年男性

## A Young Man With Frequent Ventricular Tachycardia

寺岡邦彦KunihikoTERAOKA, MD平野雅春MasaharuHIRANO, MD大久保豊幸ToyoyukiOOKUBO, MD阿部公彦KimihikoABE, MD山科章AkiraYAMASHINA, MD,

#### 症例 21歳,男性

生来健康.大学の健康診断にて心室期外収縮を指摘された.安静時心電図では,正常 洞調律,心拍数87/minで,不完全右脚ブロックを認めた.胸部X線単純写真では,心胸 郭比は47%,その他,とくに異常を認めなかった.ホルター心電図により,多源性の心 室期外収縮ならびに非持続性心室頻拍を認め,心エコー図法では,右室の著明な拡張と 機能不全,さらに異常な索状物を認めた.Fig.1に心臓シネ磁気共鳴画像(magnetic resonance imaging: MRI)短軸像を,Fig.2に水分抑制,化学シフトMRIを示す.



東京医科大学 第二内科:〒160-0023 東京都新宿区西新宿6-7-1 The Second Department of Internal Medicine, Tokyo Medical University, Tokyo Address for correspondence: TERAOKA K, MD, The Second Department of Internal Medicine, Tokyo Medical University, Nishishinjuku 6-7-1, Shinjuku-ku, Tokyo 160-0023 Manuscript received November 14, 2001; accepted November 17, 2001



Fig. 2

### 診断のポイント

多発する多源性心室不整脈,心エコー図法での右 室の拡大から催不整脈性右室心筋症を疑い,心臓 MRIを行った.Fig.1-Aでは,右室の著明な拡張が 認められた.さらに,心尖部短軸像のFig.1-Bでは, 異常な肉柱形成をみた(矢印).シネMRIによる右室 壁運動の評価では,右室壁は全周性に壁運動の低下 がみられ,右室駆出率は29.8%と低下していた.Fig. 2に示すMRIの水分抑制,化学シフト画像では,心室 中隔右室側に明瞭な脂肪変性が認められた.右室心 筋生検(Fig.3)では,心筋間質の線維化と脂肪組織の 置換性浸潤が観察され,催不整脈性右室心筋症と診 断された.

催不整脈性右室心筋症は,右室の拡大と壁運動の 低下,右室起源の心室頻拍などを呈し,病理組織学 的には心筋への脂肪浸潤と線維化を特徴とする<sup>1)</sup>.予 後は,とくに若年者において,不整脈による突然死 が問題となる.McKennaら<sup>2)</sup>は,家族歴,心電図上の 脱分極・伝導異常,心電図再分極異常,不整脈,右 室全体ないし局所の機能低下・構造的変化,および 組織学的変化を診断基準として挙げている.このう ち,心筋の組織学的変化である脂肪浸潤と線維化は もっぱら心筋生検によってきたが,心筋生検は穿孔 などのリスクを伴い,また施行困難例も多い.一方, MRIはこれまで,コンピューター断層撮影と並んで 右室の形態や機能異常の検出に有用であると報告さ れ,不整脈源性右室心筋症(arrhythmogenic right ventricular cardiomyopathy: ARVC)の診断に有用との報告 もある<sup>3)</sup>. さらに,今回我々も使用した化学シフト画 像により,水分と脂肪組織を分離し,水分の画像成 分を抑制して,脂肪組織のみを描出することが可能 である<sup>4)</sup>.本例では,chemical shift selective 法による 化学シフト画像により<sup>5)</sup>,心室中隔右室側の脂肪浸潤 が明瞭に描出され,同部よりの生検組織に組織学的 にも脂肪の浸潤が確認された.すなわち,MRIは, ARVCの診断に重要な右室の形態的・機能的評価ばか りでなく,組織学的異常としての脂肪の描出が可能 であり,その診断に極めて有効である.

**Diagnosis**: Arrhythmogenic right ventricular cardiomyopathy

#### 文 献

- Fontaine G, Fontaliran F, Lascult G, Aouate P, Tonet J, Frank R: Arrhythmogenic right ventricular dysplasia. *in* Cardiac Electrophysiology: From Cell to Bedsides( ed by Zipes DP, Jalife J). WB Saunders, Philadelphia, 1994; pp 754 - 769
- 2) McKenna WJ, Thiene G, Nava A, Fontaliran F, Blomstrom-Lundqvist C, Fontaine G, Camerini F: Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy: Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. Br Heart J 1994; **71**: 215 - 218
- 3 ) Auffermann W, Wichter T, Breithardt G, Joachimsen K, Peters PE: Arrhythmogenic right ventricular disease: MR

J Cardiol 2002 Apr; 39(4): 237-239



Fig. 3

imaging vs angiography. Am J Roentgenol 1993; 161: 549 - 555

- 4)吉川邦浩,及川浩,鎌田弘之,内山尚,柳澤融: 不整脈源性右室異形成のMRI:化学シフト画像の有用
- Fig. 1 Cine magnetic resonance images in the short-axis view of both ventricles( A: mid-portion, B: apical portion ) Arrow shows abnormal right ventricular muscle folds.

RV = right ventricle; LV = left ventricle.

Fig. 2 Tl-weighted cine magnetic resonance images in the short-axis view of both ventricles at the mid-portion(*A*), and water-suppressed, chemical shift

性.日磁医誌 1994; 14: 273 - 276

5) Hasse A, Frahm J, Hanicke W, Matthaei D: 1H NMR chemical shift selective (CHESS ) maging. Phys Med Bio 1985; 30: 341 - 344

**image by the chemical shift selective method**(*B*) *Arrows* show the high intensity fatty tissue deposit in the right side of the interventricular septum. Abbreviations as in Fig. 1.

Fig. 3 Photomicrograph of the specimen of the myocardium in the interventricular septum obtained by biopsy( hematoxylin-eosin staining, × 200 ) *Arrows* show the fatty infiltration.

J Cardiol 2002 Apr; 39(4): 237-239