マウスの心筋灌流評価における経 静脈性心筋コントラストエコー図 法の有用性

Efficacy of Intravenous Myocardial Contrast Echocardiography for Assessment of Perfusion Area of the Heart in Mice

平山 秀男	Hideo	HIRAYAMA, BS
石藏 文信	Fuminobu	ISHIKURA, MD, FJCC
奥田 晃平	Kohei	OKUDA, BS
平野貴史郎	Takashiro	HIRANO, BS
小林 春香	Haruka	KOBAYASHI, BS
別府慎太郎	Shintaro	BEPPU, MD, FJCC

Abstract

Background and Objectives. Intravenous myocardial contrast echocardiography is used clinically, but use in small animals has not been evaluated. The conditions for myocardial opacification and the feasibility of myocardial contrast echocardiography were examined in mice.

Methods. Closed chest mice were examined. The left ventricular short-axis view at the mid papillary muscle level was recorded before and after NC100100 injection using a SONOS 5500(PHILIPS) Real time and intermittent triggering(every 5 beats)myocardial contrast echocardiography was performed with a mechanical index of low(0.3), middle(0.7), and high(1.5). Open chest mice were examined after left anterior descending coronary artery ligation. Myocardial contrast echocardiography was performed using intermittent triggering imaging(every 5 beats)with high mechanical index(1.5). The ratio of the non-perfused area to the whole left ventricular wall area was compared with that of the non-stained area by Evans Blue.

Results. The left ventricular myocardium was opacified in any setting. Good opacification was acquired at middle mechanical index(0.7) in real time myocardial contrast echocardiography and at high mechanical index(1.5) in intermittent myocardial contrast echocardiography. The opacified and non-opacified myocardium were clearly identified in all mice with coronary ligation. The non-opacified area ratio showed a good correlation with the non-stained area ratio (y = 0.93x + 0.51, r = 0.94, p < 0.05).

Conclusions. Myocardial contrast echocardiography can be used to assess myocardial perfusion and determine the ischemic area accurately *in situ* in the mouse.

J Cardiol 2003 Nov; 42(5): 213 - 219

Key Words

Contrast echocardiographyEchocardiography, transthoracicMyocardium (myocardial perfusion)Experimental medicine

はじめに

近年,超音波造影剤の開発や超音波診断装置の発達 により,心筋コントラストエコー図法に関する基礎研 究が進み,心筋灌流評価法としての有用性が確認され ている.しかし,その検査対象となる心臓は,ヒトを はじめイヌ,ブタなどのように,そのサイズが比較的 大きい動物が主である.

一方,多くの病態モデルや遺伝子操作モデルとして 利用されることの多いマウスでは,対象となる心臓が

大阪大学医学部 保健学科: 〒565-0871 大阪府吹田市山田丘1-7

School of Allied Health Sciences, Osaka University, Faculty of Medicine, Osaka

Address for correspondence: BEPPU S, MD, FJCC, School of Allied Health Sciences, Osaka University, Faculty of Medicine, Yamadaoka 1 - 7, Suita, Osaka 565 - 0871

Manuscript received March 6, 2003; revised July 8, 2003; accepted July 9, 2003

BS = bachelor of science

214 平山・石藏・奥田 ほか

非常に小さいため,手技的な困難さや測定精度の問題 により,心室容積や心室壁厚などの基本的計測ですら 困難であった.近年開発された高周波探触子を用いる と,測定精度も向上し再現性のある計測が可能になっ たが^{1.3)},心筋灌流の評価法についてはマイクロス フェア法や,死後の病理学的検討に依存しているのが 現状である^{4.5)}.そこで本研究の目的は,経静脈性心 筋コントラストエコー図法を用い,in situの状態でマ ウス心臓の心筋灌流評価を行う際の染影条件設定およ び灌流欠損領域の定量的評価の可能性を明らかにする ことである.

対象と方法

1. 心筋灌流評価のための条件設定の検討

ICR系雄性マウス5匹(8-10週齢,体重38-41g)を 対象とした.ネンブタール(1.0ml/kg)を腹腔内に投与 し,麻酔下で仰臥位に固定して,頸部および胸部を剃 毛し, 頸動脈には超音波造影剤注入のために, ポリエ チレンチューブ(内径0.28mm)を留置した.超音波装 置はSONOS5500(PHILIPS製)を,探触子はリニア型 高周波ワイドバンド対応の15-6L型探触子(周波数6-15 MHz)を用い,閉胸下で左室短軸像乳頭筋レベルを ズーム機能を用いて拡大描出した.高周波探触子には セカンドハーモニック法は用意されていないので,基 本波モードのままで frequency fusion = 5とし,他の設 定条件では,送信方法は連続送信法(frame rate 30Hz), または5心拍に1回の間欠送信法(収縮末期に心電同 期)の2通りを用い, mechanical index(MI)を低音圧 (0.3),中音圧(0.7),高音圧(1.5)の3段階に設定し た.

超音波造影剤は,フルオロカーボンからなる第二世 代の造影剤NC10010Q(Nycomed Amersham)(5倍希釈) を用い,その0.05m/をマイクロシリンジを用いて頸 動脈より注入し,得られた像をビデオテープに記録し た.頸動脈投与を行った理由は,最適撮像条件の検討 の際に造影剤の頻回投与においても安定した結果が得 られたためである.

心筋コントラストエコー図法により得られた心筋染 影性の評価には,日本光電製Color Cardiology Work Stationを用いて,グレースケール256階調で輝度解析 した.連続送信法,間欠送信法の両者で,収縮末期像 のみを選択し,左室後側壁に関心領域を設定し輝度を 測定した.超音波造影剤流入後,最も高い輝度値から 超音波造影剤流入前の輝度値を引いたものを輝度上昇 度とした.

各設定条件間の心筋染影度の差の検定は分散分析法 による多重比較検定で行った.

2. 心筋灌流欠損領域の定量的評価

ICR系雄性マウス10匹(8-10週齢,体重38-41g)を 対象とした.麻酔・剃毛を前項の方法と同様に行い, 仰臥位に固定した.気管内挿管後レスピレーター(シ ナノ製作所,SN-480-7)に接続し,1回換気量1.0-1.5m/,換気回数80-100/minで呼吸管理した.超音波 造影剤注入のためのチューブを頸静脈に留置した.傍 胸骨開胸により心臓に至り,心外膜を切開して心臓を 露出させ,キシロカイン(10倍希釈,0.1ml)を腹腔内 投与したのち,左冠動脈前下行枝を手術用縫合糸 (NESCOSUTURE,6-0)で完全結紮した⁶⁾.

超音波装置は,同じくSONOS5500(PHILIPS製)を 使用した.前項の検討で使用したリニア型探触子は周 波数は高いが,開胸マウスの心臓に直接探触子を当て ることが不可能であるため,セクタ型高周波ワイドバ ンド対応のs12型探触子(周波数5-12MHz)を用いた. 探触子の先端に水を満たしたゴム製薄膜(約2.5 cm)を 装着し,これを探触子と心臓間のスペーサーとして直 接心臓に当て,ズーム機能を用いて左室短軸像乳頭筋 レベルを拡大描出した.

心筋コントラストエコー図法のための設定は上記基礎検討で最良の心筋染影が得られた条件,すなわち frequency fusion = 5, MI値1.5,5心拍に1回の間欠送 信法(収縮末期に心電同期)とした.間欠送信のために 今回の検討では壁運動の評価は行ってはいない.超音 波造影剤NC100100(30倍希釈,0.02ml)を頸静脈より 注入し,得られた像をビデオテープに記録し,心筋コ ントラストエコー図像より左室壁全面積に対する超音 波造影剤の非染影面積の割合を求めた.

心筋コントラストエコー図法施行後,3% Evans Blue 水溶液を頸静脈より1m/注入した.Evans Blue 水 溶液は超音波洗浄機(BRANSON製,BRANSONIC ULTRASONIC CLEANER,3510-DTH,100W,42kHz) で数分間攪拌したものを用い,シリンジフィルター (GelmanSciences製,Sterile Acrodisc 1.2µm)を介して 注入した 注入経路は極細い注射針やチュープであり,

J Cardiol 2003 Nov; 42(5): 213–219

マウスにおける心筋コントラストエコー図法 215

Fig. 1 Photomicrographs of Evans Blue solution Before ultrasonic agitation, the particle size is relatively large and unever(*left*). After agitation, the particle size is small and ever(*right*).

撹拌前の状態では粒が不揃いのEvans Blue 粒子(Fig.
1 - 左)が経路を塞栓閉塞したが,超音波撹拌しシリンジフィルターを通した粒径は小さくなり(Fig. 1 - 右),
染色も明瞭かつ均一に行えた.

摘出した心臓を生理食塩水で洗浄後,10% 中性ホル マリン溶液で固定した.乳頭筋レベルで約2-3mm幅 の病理切片を3スライス作成し,断層心エコー図像を 参考に,最も形状の近い断面の病理切片を採用した. この病理切片をデジタルカメラ(Nikon製, COOLPIX950)で撮影し,その画像から,Evans Blue の非染色部分面積(非灌流領域)の左室壁全面積に対す る割合をAdobe Photoshop 4.0.1Jを用いオフラインに より求めた.この割合を心筋コントラストエコー図法 で求めた割合と対比検討した.両者の相関を直線回帰 し,Bland-Altman法による評価も行った.

結 果

1. 心筋灌流評価のための条件設定の検討

各条件での心筋コントラストエコー図像をFig. 2に 示す.すべての条件において心筋染影を肉眼で確認す ることができた.連続送信法に比べて,間欠送信法の ほうが良好な心筋染影が得られた.MI = 0.3,0.7, 1.5 での輝度上昇度は,連続送信法において,それぞ れ11.4 ± 5.0,31.8 ± 7.0,24.3 ± 8.7,間欠送信法にお いてはそれぞれ14.8 ± 3.0,39.8 ± 8.0,53.1 ± 7.3 で あり(Fig. 3),間欠送信法と高音圧(1.5)の組み合わせ で最良の心筋染影が得られた.

2. 心筋灌流欠損領域の定量的評価

すべてのマウスで良好な心筋染影が得られ,その結 果,灌流欠損領域は非染影領域として認識された (Fig. 4 - 左). Evans Blue 染色では灌流欠損部は非染 色領域として明確に確認することができた(Fig. 4 -右). 心筋コントラストエコー図法による非染影領域 は,Evans Blue による非染色領域と良好な相関(y =0.93x + 0.51, r = 0.94, p < 0.05)を示した(Fig. 5).ま た,Bland-Altman法における評価でも,両者の間には 大きな値のばらつきはなかった(Fig. 6).

考 案

今回の実験により心筋コントラストエコー図法によ リマウスの心筋灌流が確認できた.条件的には間欠送 信法と高音圧の組み合わせで最良の心筋染影が得られ た.高音圧により高い輝度が得られた理由は微小気泡 からなる超音波造影剤のフラッシュ効果によるものと 考えられる⁷⁾.画像作成手法として,心筋コントラス トエコー図法での心筋染影にはハーモニックイメージ ング法⁸⁾が用いられるのが一般的である.今回用いた 高周波探触子にはハーモニックイメージングは用意さ れていないものの,周波数範囲は5-12MHzであり, 周波数帯域が広いと複数の周波数からの画像構築が可 能である.装置では frequency fusion により画像構築周 波数が選択可能で,今回は対象が小動物ということか ら,高周波成分を中心とした画像構築をするモードで ある frequency fusion = 5を選択した.これによりほぼ 10 MHz 付近の周波数を受信するようになる⁹⁾.つまり,

216 平山・石藏・奥田 ほか

Fig. 2 Myocardial contrast echocardiograms in a mouse
Good opacification is noted at MI 0.7 in RTI and at MI 1.5 in ITI.
MI = mechanical index; RTI = real time imaging; ITI = intermittent triggering imaging.

画像構築には,10MHz付近の送信波からの基本波成 分だけでなく,5-6MHz付近の送信波からのセカン ドハーモニック成分も含まれている.これが基本波 モードにもかかわらず,良好な心筋染影が獲得できた 大きな原因ではないかと考えられる.

今回の検討で,連続送信法においても心筋染影が得 られたことは注目される.ただし,最良の心筋染影は 中音圧で得られた.低音圧では気泡からの反射信号が 少なく,逆に高音圧では気泡が破壊されてしまう.中 音圧では,この両者の欠点を補えたために,最も心筋 輝度が高かったのであろう(Fig.3).もちろん心筋染 影輝度自体は,間欠送信法のほうが高く,輝度値だけ からみれば間欠送信法が推奨される.

左冠動脈結紮後の心筋コントラストエコー図法で灌 流欠損領域は非染影領域として確認でき¹⁰⁾, Evans Blue 染色により得られた結果と良い相関を示した. 本実験と同様の試みをした Scherrer-Crosbie ら¹¹⁾の実験 でも、両者は良い相関を示したことが報告されている.

しかし,彼らの検討では,使用装置の制限から高心拍数のマウスでの心電図同期ができなかったことから, 連続送信法による検討となっている.連続送信法においては,MI値の設定が重要になってくるが, Scherrer-Crosbieらの検討では,MI値に関する設定の

J Cardiol 2003 Nov; 42(5): 213-219

マウスにおける心筋コントラストエコー図法 217

記述がない.この点に関し,今回の実験において連続 送信法においてはMI値を中音圧に設定することで, 気泡の崩壊の影響を少なくし,心筋コントラストエ コー図法が可能であることを示した.

もちろん,連続送信法では壁運動異常も同時に評価 可能であるから有用である.しかし,気泡の崩壊によ る心筋染影への影響が無視できないこと,正確な欠損 領域の評価には十分な心筋染影を得ることが重要であ ることを考えると,灌流欠損領域の評価には間欠送信 法による検討が適している.さらに同じ心筋染影を得 ようとすれば,連続送信法に比べて,間欠送信法のほ うが造影剤の投与量は一般に少量で可能である.造影 剤によるマウス心臓への容量負荷を考えても,灌流欠 損領域の評価には間欠送信法が適切と考える.

以上のように,今回の検討において,マウスにおけ る心筋コントラストエコー図法の方法論の確立と同時 に,心筋灌流欠損領域の定量的評価が可能であること が示された.

本実験の問題点

本実験の対象がマウスという小動物であることから いくつかの制限や問題点が生じる.

第1に造影剤の投与方法と投与量の問題がある。今回の実験では超音波造影剤を単回投与したが,超音波 造影剤注入用のポリエチレンチューブの内径は 0.28mmと非常に小さく、シリンジも細小のものを用 いているため、注入時に高い圧力がかかる可能性があ る。微小気泡は圧力に脆弱であり、それを避けるため には持続投与のほうが適しているように思われる。し かし一方では、小動物であるマウスの体重を考慮する と、わずかな注入量増加によっても過大な容積負荷が Fig. 4 Comparison of myocardial contrast echocardiographic image(*left*) and photograph(*right*) of Evans Blue staining *Arrows* show the margin between the perfusion and non-perfusion areas.

Fig. 5 Comparison of the percentage areas of perfusion defects shown by myocardial contrast echocardiography and Evans Blue staining MCE = myocardial contrast echocardiography.

J Cardiol 2003 Nov; 42(5): 213-219

218 平山・石藏・奥田 ほか

生じるため,持続注入は困難であろう.今回,単回投 与後フラッシュ用の注入を行わなかったのも,心臓へ の容量負荷を避けるためである.マウスの体重を40g, 成人男性の体重を60kgと仮定すると,マウスでの 0.02m/投与は,ヒトでは30m/投与に相当する.現在, レボビストょ(日本シェーリング・田辺製薬)の臨床投 与量が単回投与では数mlであることを考慮すると, マウスに対しての投与量として減量できる可能性はあ る.ただし,単純に体重当たりの投与量を同一にでき るかなど 投与量に関しての検討は今後の問題である. 注入経路がごく細いことを考慮すると,前述の考察の ように,注入途中で加圧による機械的気泡の崩壊をき たしている可能性がある.今回の検討での使用量は多 いが,実際の気泡密度は低下しているかもしれない. 厳密に投与量を決定するためには,極細の注入経路に よる注入速度と,それにかかる圧,注入経路出口にお ける気泡数が検討されなければならない.もちろん最 初から濃度を希釈して用いれば、気泡密度が低下し、 +分な超音波反射が得られない可能性は高い.

第2に,超音波装置の問題がある.左室短軸直径が 約5mmのマウスの心臓を描出するには高い空間分解 能が要求される.このために高周波帯域を持つ探触子 を使用し,その結果,良好なエコー図像が得られた. 現在,高周波探触子にはハーモニックイメージングの 設定は存在しないため,今回の実験のような条件の設 定をしたが,今後,高周波探触子においてもハーモ ニックイメージングが開発されれば,より詳細で良好 な画像が得られると予想される.

研究の発展性

高周波探触子を用いれば,高度の分解能を有する画像が得られ,マウスにおいても生理学的検討や機能評価が可能になる.さらに心筋コントラストエコー図法を用いることで,心筋灌流の評価を経時的に行うことも可能である.今後,心疾患を持った遺伝子操作マウスなどへの適応が期待され,より詳細な情報の獲得が可能になると考えられる.

結 語

本実験によりマウスの心筋灌流欠損領域の定量的評価が心筋コントラストエコー図法で可能であることが確認された.現在,商品化されている超音波診断装置で,また連続送信法でも心筋染影を得られたことから,今後の装置の発展が期待でき,マウスにおいても灌流評価と壁運動評価の同時施行が可能であると思われる.

要

約—

背景・目的:心筋コントラストエコー図法の心筋灌流評価に対する有用性は確立されたが,小動物への応用は未検討である.そこで今回はマウスを対象とし,本法による心筋灌流評価のための条件設定の確立と,それに基づき本法を施行した際の虚血領域診断の有用性について検討した.

方 法: ICR 系雄性マウスを対象とし,超音波装置はSONOS 5500(PHILIPS製),超音波造影剤 はNC100100を用い,左室短軸心筋染影像を記録した.条件設定については,閉胸下で15-6Lリニ ア型探触子を用いて左室短軸像を記録した.映像法を連続送信法または間欠送信法(1:5)を用い, 音圧を mechanical index(MI)で0.3,0.7,1.5の3段階での心筋染影度を求めた.虚血領域の評価に ついては,左冠動脈前下行枝を結紮したのち,s12型探触子を用いて5心拍に1回の間欠送信法, MI値1.5により左室短軸心筋染影像を記録した.ついで,Evans Blueを注入し病理標本を作成した. 心筋コントラストエコー図法からは左室壁全体に対する非染影部面積の割合を,標本からは左室壁 全体に対する非染色部面積の割合を求めた.

結 果:条件設定については,すべての条件において,心筋染影が確認されたが,連続送信法ではMIが0.7,間欠送信法では1.5で最良の心筋染影が得られた.虚血領域の評価については,すべてのマウスで染影領域と非染影領域は明確に認識でき,心筋コントラストの非染影領域は,病理標本の非染色領域と良い相関を示した(y = 0.93x + 0.51, r = 0.94, p < 0.05).

結 語:心筋コントラストエコー図法を用いた心筋灌流評価は,マウスのような小動物にも適応 が可能であり,心筋虚血領域の正確な定量が可能である.

-J Cardiol 2003 Nov; 42(5): 213 - 219-

J Cardiol 2003 Nov; 42(5): 213-219

マウスにおける心筋コントラストエコー図法 219

文 献

- Gardin JM, Siri FM, Kitsis RN, Edwards JG, Leinwand LA: Echocardiographic assessment of left ventricular mass and systolic function in mice. Circ Res 1995; 76: 907 -914
- 2) Manning WJ, Wei JY, Katz SE, Litwin SE, Douglas PS: In vivo assessment of LV mass in mice using high-frequency cardiac ultrasound: Necropsy validation. Am J Physiol 1994; 266 (Suppl): H1672 - H1675
- 3) Hutter JJ, Mestril R, Tam EK, Sievers RE, Dillmann WH, Wolfe CL: Overexpression of heart shock protein 72 in transgenic mice decreases infarct size in vivo. Circulation 1996; 94: 1408 - 1411
- 4) Gao XM, Dart AM, Dewar E, Jennings G, Du XJ: Serial echocardiographic assessment of left ventricular dimensions and function after myocardial infarction in mice. Cardiovasc Res 2000; 45: 330 - 338
- 5) Michael LH, Entman ML, Hartly CJ, Youker KA, Zhu J, Hall SR, Hawkins HK, Berens K, Ballantyne CM: Myocardial ischemia and reperfusion: A murine model. Am J Physiol 1995; 269(Suppl): H2147 - H2154

- 6) Johns TNP, Byron JO: Experimental myocardial infraction: A method of coronary occlusion in small animal. Ann Surg 1954; **140**: 675 - 682
- 7) 別府慎太郎: 気泡のふるまい.in心筋コントラストエ コー法: 経静脈性のknow how(別府慎太郎 編),第1 版.文光堂,東京,2000; pp 25 - 34
- 8) 神山直久: 気泡の物理学. *in* 心筋コントラストエコー 法: 経静脈性の know how(別府慎太郎 編), 第1版. 文光堂, 東京, 2000; pp 35 - 39
- 9) 岩本 貢: 超音波装置の最新技術解説(メーカーの立場から). *in* INNERVISION(インナービジョン 編), 第1版. 医療科学社,東京,2001; pp 37-42
- 10)伊藤浩:急性心筋梗塞とコントラスト心エコー図. in心臓病診療プラクティス12:冠動脈疾患を心エコー 図で診る(吉川純一編),第1版.文光堂,東京, 1997; pp 135 - 137
- 11) Scherrer-Crosbie M, Steudel W, Ullrich R, Hunziker PR, Liel-Cohen N, Newell J, Zaroff J, Zapol WM, Picard MH: Echocardiographic determination of risk area size in a murine model of myocardial ischemia. Am J Physiol 1999; 277(Suppl): H986 - H992